Fluorophores for live cell imaging of AGT fusion proteins across the visible spectrum.

نویسندگان

  • Antje Keppler
  • Claudio Arrivoli
  • Lucia Sironi
  • Jan Ellenberg
چکیده

O6-alkylguanine-DNA alkyltransferase (AGT) fusion proteins can be specifically and covalently labeled with fluorescent O6-benzylguanine (O6-BG) derivatives for multicolor live cell imaging approaches. Here, we characterize several new BG fluorophores suitable for in vivo AGT labeling that display fluorescence emission maxima covering the visible spectrum from 472 to 673 nm, thereby extending the spectral limits set by fluorescent proteins. We show that the photostability of the cell-permeable dyes BG Rhodamine Green (BG505) and CP tetramethylrhodamine (CP-TMR) is in the range of enhanced green fluorescent protein (EGFP) and monomeric red fluorescent protein (mRFP), and that BG diethylaminomethyl coumarin (BGDEAC), a derivative of coumarin, is even more stable than enhanced cyan fluorescent protein (ECFP). Due to the increasing number of new BG derivatives with interesting fluorescence properties, such as far-red emission, fluorescence labeling of AGT fusion proteins is becoming a versatile alternative to existing live cell imaging approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Labeling of fusion proteins with synthetic fluorophores in live cells.

A general approach for the sequential labeling of fusion proteins of O(6)-alkylguanine-DNA alkyltransferase (AGT) with different fluorophores in mammalian cells is presented. AGT fusion proteins with different localizations in the cell can be labeled specifically with different fluorophores, and the fluorescence labeling can be used for applications such as multicolor analysis of dynamic proces...

متن کامل

Advancements in the Synthesis and Application of Near-Infrared Imaging Reagents: A Dissertation

Fluorescence-based imaging techniques provide a simple, highly sensitive method of studying live cells and whole organisms in real time. Without question, fluorophores such as GFP, fluorescein, and rhodamines have contributed vastly to our understanding of both cell biology and biochemistry. However, most of the fluorescent molecules currently utilized suffer from one major drawback, the use of...

متن کامل

RNA mimics of green fluorescent protein.

Green fluorescent protein (GFP) and its derivatives have transformed the use and analysis of proteins for diverse applications. Like proteins, RNA has complex roles in cellular function and is increasingly used for various applications, but a comparable approach for fluorescently tagging RNA is lacking. Here, we describe the generation of RNA aptamers that bind fluorophores resembling the fluor...

متن کامل

Optical lock-in detection of FRET using synthetic and genetically encoded optical switches.

The Förster resonance energy transfer (FRET) technique is widely used for studying protein interactions within live cells. The effectiveness and sensitivity of determining FRET, however, can be reduced by photobleaching, cross talk, autofluorescence, and unlabeled, endogenous proteins. We present a FRET imaging method using an optical switch probe, Nitrobenzospiropyran (NitroBIPS), which substa...

متن کامل

In vivo imaging using quantum-dot-conjugated probes.

This unit describes the use of quantum dots (QDs) for live-cell imaging and the use of QDs in flow cytometry for quantitative analysis of ligand binding constants and receptor density. Conventional fluorophores and visible fluorescent protein (VFP) constructs have allowed visualization of many cellular processes. However, organic and biomolecular fluorophores have limitations in their applicati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • BioTechniques

دوره 41 2  شماره 

صفحات  -

تاریخ انتشار 2006